More News About NUCB2/Nesfatin-1: A New Factor in the Hypothalamic Control of Glucose Homeostasis?

نویسنده

  • Andrew A. Butler
چکیده

Insulin resistance and declining insulin production define a spectrum of metabolic diseases afflicting a growing portion of the population (1). Current estimates suggest that 26 million Americans have diabetes, with the incidence of type 2 diabetes involving insulin resistance and b-cell decompensation far exceeding that of type 1 diabetes. Treatment of type 2 diabetes involves secretagogues that increase insulin secretion and insulin sensitizers to improve insulin receptor (INSR) action (and likely include other effects on glucose production) (1). These drugs exhibit a short duration of efficacy in many patients and often require a multidrug approach as the disease progresses and insulin injections when other treatment options fail. A clear need exists for continued research aimed at developing more effective strategies for maintaining glycemic control. In this issue, Yang et al. (2) report that intracerebroventricular (ICV) infusion of nesfastin-1 improves glucose homeostasis in diet-induced obese rats by inhibiting hepatic glucose production. Improved insulin action is one mechanism for the reduction in hepatic glucose production. Increased phosphorylation of the INSR and insulin receptor substrate-1 was observed in lean and obese rats following ICV administration of nesfatin-1. Tyrosine phosphorylationof multiple residues in the insulin receptor substrate-1 coding sequence is an important early event following INSR activation. This leads to an intracellular signaling cascade that facilitates changes in energy metabolism by regulating gene transcription and enzymatic activity (3). The changes in phosphorylation of AKT, AMP-dependent protein kinase, mammalian target of rapamycin, and mammalian target of rapamycin complex 2 that were also observed were consistent with improved actions of these important downstream effectors in the INSR signaling cascade. Activity of phosphoenolpyruvate carboxykinase, the rate-limiting enzyme in gluconeogenesis, was also reduced in livers of lean and diet-induced obese rats administered nesfatin-1 ICV. Finally, a modest effect to stimulate whole-body glucose disposal and increased glucose uptake in skeletal muscle was also observed. Nesfatin-1 is an 82–amino acid peptide derived from the posttranslational processing of nucleobindin-2 (NUCB2), and was originally reported by Oh-I et al. (4) in 2006 to function as a “satiety” factor (Fig. 1). Daily ICV injections of nesfatin-1 reduced food intake and attenuated weight gain in rats (4). Importantly, antibodies that inhibit nesfatin-1 action or antisense oligonucleotides that target Nucb2 expression had the opposite effect: increasing food intake and weight gain. Other laboratories reported similar inhibitory effects of nesfatin-1 on food intake in rats and mice (5). Subsequent studies reported that the functions of nesfatin-1 are consistent with a role in metabolic homeostasis including inhibiting gastric motility, stimulating the adrenal axis and autonomic function, and stimulating of glucose-induced insulin secretion from b-cells (5). Oh-I et al. reported that Nucb2 mRNA is expressed in the arcuate and paraventricular (PVN) nuclei of the hypothalamus and in the lateral hypothalamus (4). Subsequent analysis indicated that Nucb2 mRNA is widely expressed in the central nervous system, where it exhibits associations with neuropeptides involved in regulating ingestive behaviors, gonadal function, and the stress reponse (5). To appreciate the results presented in this issue of Diabetes, it is important to be aware that, at least in rodents, actions involving hypothalamic neurons are essential for glucose homeostasis. Most hypothalamic neuropeptides and neurotransmitters regulating appetite also affect peripheral glucose metabolism (6–8). Well-studied examples include the regulation of insulin sensitivity in peripheral tissues through modulation of autonomic activity by leptin and melanocortin receptors expressed by hypothalamic (and extrahypothalamic) neurons (9). Indeed, the effective control of glucose homeostasis by insulin requires the actions of INSRs expressed in the hypothalamus (7). The attenuated response of hypothalamic neurons to signals of metabolic status such as insulin, glucose and leptin has been hypothesized to be a contributing factor in deteriorating control of metabolic homeostasis in obesity (6,7). Experimental data suggesting a link between nesfatin-1 and the melanocortin system provide further rationale for the experiments described by Yang et al. and suggest future research. For example, it is not clear whether melanocortin neurons in the PVN implicated in the effects of nesfatin-1 on feeding are involved in mediating these actions, whereas actions of nesfatin-1 in other regions of the brain that regulate autonomic functions may also be involved (Fig. 1). Nucb2 expression in the PVN is stimulated by central injection of a-melanocyte–stimulating hormone whereas the anorectic response to nesfatin-1 is inhibited by SHU9119, an antagonist for the melanocortin-4 receptor (10). Melanocortin-4 receptors regulate satiety and also modulate autonomic outputs that affect insulin action in the liver (11–13). Although Yang et al. report increased Fos immunoreactivity in the arcuate and PVN with nesfatin-1 treatment (2), they did not investigate the identity of neurons involved. Future studies could therefore investigate these neural pathway(s) and whether central antagonism of melanocortin signaling inhibits the effects of nesfatin-1 on glucose homeostasis (4). Sophisticated genetic tools have been developed that could be used to From the Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, Florida. Corresponding author: Andrew A. Butler, [email protected]. DOI: 10.2337/db12-0576 2012 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by -nc-nd/3.0/ for details. See accompanying original article, p. 1959.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hypothalamic nesfatin-1/NUCB2 knockdown augments hepatic gluconeogenesis that is correlated with inhibition of mTOR-STAT3 signaling pathway in rats.

Nesfatin-1, an 82-amino acid neuropeptide, has recently been characterized as a potent metabolic regulator. However, the metabolic mechanisms and signaling steps directly associated with the action of nesfatin-1 have not been well delineated. We established a loss-of-function model of hypothalamic nesfatin-1/NUCB2 signaling in rats through an adenoviral-mediated RNA interference. With this mode...

متن کامل

Nesfatin-1: functions and physiology of a novel regulatory peptide.

Nesfatin-1 was identified in 2006 as a potent anorexigenic peptide involved in the regulation of homeostatic feeding. It is processed from the precursor-peptide NEFA/nucleobindin 2 (NUCB2), which is expressed both in the central nervous system as well as in the periphery, from where it can access the brain via non-saturable transmembrane diffusion. In hypothalamus and brainstem, nesfatin-1 recr...

متن کامل

The anorexigenic neuropeptide, nesfatin-1, is indispensable for normal puberty onset in the female rat.

The hypothalamic peptide, nesfatin-1, derived from the precursor NEFA/nucleobindin 2 (NUCB2), was recently identified as anorexigenic signal, acting in a leptin-independent manner. Yet its participation in the regulation of other biological functions gated by body energy status remains unexplored. We show herein that NUCB2/nesfatin-1 is involved in the control of female puberty. NUCB2/nesfatin ...

متن کامل

Insulinotropic nucleobindin-2/nesfatin-1 is dynamically expressed in the haemochorial mouse and human placenta.

The placenta is the physiological bridge between mother and fetus and has life-sustaining functions during pregnancy, including metabolic regulation, fetal protection and hormone secretion. Nucleobindin-2 (NUCB2) is a calcium- and DNA-binding protein and precursor of nesfatin-1, a signalling peptide with multiple functions, including regulation of energy homeostasis and glucose transport. These...

متن کامل

Fibroblast growth factor 21, assisted by elevated glucose, activates paraventricular nucleus NUCB2/Nesfatin-1 neurons to produce satiety under fed states

Fibroblast growth factor 21 (FGF21), liver-derived hormone, exerts diverse metabolic effects, being considered for clinical application to treat obesity and diabetes. However, its anorexigenic effect is debatable and whether it involves the central mechanism remains unclarified. Moreover, the neuron mediating FGF21's anorexigenic effect and the systemic energy state supporting it are unclear. W...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 61  شماره 

صفحات  -

تاریخ انتشار 2012